INVESTIGATION OF THE USE OF CHEMICALS IN FOOD PRODUCTS

JANUARY 3, 1951.—Committed to the Committee of the Whole House on the State of the Union and ordered to be printed.

Mr. Delaney, from the Select Committee To Investigate the Use of Chemicals in Food Products, submitted the following

REPORT

[Pursuant to H. Res. 323, 81st Cong., 1st sess.]

I. INTRODUCTION

House Resolution 323 (81st Cong., 1st sess.) authorized and directed your select committee to conduct a full and complete investigation of—

1. The nature, extent, and effect of the use of chemicals, compounds, and synthetics in the production, processing, preparation, and packaging of food products to determine the effect of the use of such chemicals, compounds, and synthetics (A) upon the health and welfare of the nation and (B) upon the stability and well-being of our agricultural economy;

2. The nature, extent, and effect of the use of pesticides and insecticides with respect to food and food products, particularly the effect of such use of pesticides and insecticides upon the health and welfare of the consumer by reason of toxic residues remaining on such food and food products as a result of such use; and

3. The nature, effect, and extent of the use of chemicals, compounds, and synthetics in the manufacture of fertilizer, particularly the effect of such use of chemicals, compounds, and synthetics upon (A) the condition of the soil as a result of the use of such fertilizer, (B) the quantity and quality of the vegetation growing from such soil, (C) the health of animals consuming such vegetation, (D) the quantity and quality of food produced from such soil, and (E) the public health and welfare generally.

The Select Committee To Investigate the Use of Chemicals in Food Products was created under the provisions of House Resolution 323 (81st Cong., 1st sess.), agreed to June 29, 1950. The committee itself
was appointed by the Speaker of the House on July 20, 1950. On August 21, 1950, House Resolution 739, which appropriated the necessary funds for the committee, was agreed to. Pursuant to the instructions contained in House Resolution 325, public hearings were held during the months of September, November, and December, 1950. The committee devoted 20 days to public hearings in which 78 witnesses were heard, including a number of prominent scientists as well as representatives of the American Medical Association, the American Public Health Association, the United States Public Health Service, the Food and Drug Administration, the National Canners Association, the National Agricultural Chemicals Association, the National Fertilizer Association, the Grocer Manufacturers of America, the General Federation of Women's Clubs, and the Cooperative League of the U.S.A. Various other witnesses, representing the chemical industry, the food industry and the consumer, as well as chemical and pesticide manufacturers and distributors, and food manufacturers, processors, and distributors, were heard.

In view of the broad scope of the investigation undertaken, and the limited time in which the select committee has had to hold hearings, the committee at this time can only offer tentative conclusions and an interim report. Further study and investigation are required before any final conclusion can be reached. Thus, limitations of time did not permit the receipt of testimony from the various bureaus of the Department of Agriculture which are intimately concerned with the committee's investigation. It is necessary that such evidence be obtained.

II. NATURE AND SCOPE OF THE PROBLEM

The number of chemicals entering the food supply of the Nation has increased tremendously in the last decade. The rapidity with which substances heretofore foreign to the body are being introduced in the production, processing, storage, packaging, and distribution of food is alarming. Eminent pharmacologists, toxicologists, physiologists, and nutritionists expressed the fear that many of the chemicals being added to food today have not been tested sufficiently to establish their nontoxicity and suitability for use in food. The advent of toxic compounds whose harmlessness can readily be detected as they are with the small and insidious toxic effects of substances which may produce harmful effects only after being fed for months or years.

Chemicals used in food which present a potential public-health problem can be classified as follows:

1. Pesticides, including insecticides, fungicides, acaricides, herbicides, and plant-growth regulators.
2. Chemicals used as preservatives, antioxidants, mold inhibitors, emulsifiers, and other agents added to food during processing or storage.
3. Chemicals used to wash utensils in food production, processing, and wrapping.

A witness for the Food and Drug Administration testified that over 800 chemicals are used, have been used, or have been suggested for use in foods. Of this total, it has been estimated that 704 are in use today, and that of the 704 chemicals only 428 are definitely known to be used in food today. Of the remainder, it is not known whether these chemicals are being used in food or if any of them remain on foods when they are marketed. With the advent of new pesticides following World War II, the use of toxic residues has increased. The expansion of use in foods has created additional hazards. On January 28, 1950, the Council on Foods and Nutrition of the American Medical Association issued a statement which appeared in the Journal of the American Medical Association. The statement declared in part:

The introduction of new synthetic pesticides offers promise for increasing the Nation's food supply and improving health through the control of insects and pests. However, it is estimated that 400 different poisons cannot be used safely on food crops without the development of certain fundamental knowledge concerning their action. The knowledge of what these materials will do to pests and food crops and the knowledge of how they are used is the subject of investigation. The safety of the new pesticides and the safety of the food crops on which they are used is not known. Some of these pesticides have not been tested sufficiently to establish their nontoxicity and suitability for use in food.

In addition to the public hazard resulting from the use of toxic residues in food, there are indications that some chemicals are being added to foods as substitutes for nutritious ingredients. The latter problem, the use of chemical emulsifiers to replace natural ingredients, will be discussed in another section of this report.

III. HAZARDS TO THE PUBLIC HEALTH RESULTING FROM THE USE OF PESTICIDES ON FOOD CROPS

It is generally recognized that most food crops cannot be brought to maturity without the use of synthetic pesticides. It is also recognized that great care must be exercised to prevent harmful residues from remaining on foods when they are marketed. With the advent of new pesticides following World War II, the use of toxic residues has increased. The expansion of use in foods has created additional hazards. On January 28, 1950, the Council on Foods and Nutrition of the American Medical Association issued a statement which appeared in the Journal of the American Medical Association. The statement declared in part:

The introduction of new synthetic pesticides offers promise for increasing the Nation's food supply and improving health through the control of insects and pests. However, it is estimated that 400 different poisons cannot be used safely on food crops without the development of certain fundamental knowledge concerning their action. The knowledge of what these materials will do to pests and food crops and the knowledge of how they are used is the subject of investigation. The safety of the new pesticides and the safety of the food crops on which they are used is not known. Some of these pesticides have not been tested sufficiently to establish their nontoxicity and suitability for use in food.

In addition to the public hazard resulting from the use of toxic residues in food, there are indications that some chemicals are being added to foods as substitutes for nutritious ingredients. The latter problem, the use of chemical emulsifiers to replace natural ingredients, will be discussed in another section of this report.
dairy farmer. Nothing was sprayed on the cattle. Within 24 hours DDT showed up in the milk of the cows, reaching a maximum of two parts per million in about 48 hours.

Chlordane is another of the chlorinated hydrocarbon insecticides which has been recommended and used in the household and on a large variety of fruit and vegetable crops. It was first made available for commercial use in 1947, and in the first 9 months of that year over 1.5 million pounds were sold. Since then its use has been consider widespread. The Director of the Division of Pharmacology of the Food and Drug Administration testified that chlordane is four to five times more poisonous than DDT and that he would hesitate to eat food that had any chlordane residue on it whatsoever. As little as one part in one hundred parts per million in the diet produces liver-cell alterations in the rat.

Selenium is an elemental metal which in the form of selenium compounds is used as an insecticide. Animal experimentation has shown that three parts per million in the diet, as selenium, will produce cirrhosis of the liver and that, if feeding is continued, the animals may develop cancer of the liver. The residue remaining on fruits or vegetables sprayed with selenium compounds is rather high. For example, on an unseasoned apple it may be as much as one part per million, and since it can penetrate the skin of the apple it may accumulate in the apple in amounts up to three parts per million. The hazard is increased by the fact that selenium builds up in the soil and can migrate from the soil into the growing plant and eventually appear in the fruit or vegetables.

Phenyl mercury compounds are used quite extensively on fruit and vegetable crops as fungicides. Investigation of these compounds shows that they tend to concentrate in the kidney and are poisonous. As little as 0.5 part per million of mercury in the form of phenylmercuric acetate leads to measurable storage in the kidney with resulting damage to the kidney. The point at which the level of mercury stored in the human kidney will cause injury is not known.

The above illustrations present some notable examples of health hazards which may arise from the use of pesticides in or on foods. In addition to the chemicals already mentioned, evidence taken at the recent spray residue tolerance hearings conducted by the Food and Drug Administration indicates that there are other pesticides being used or proposed for use whose safety has not been established. In some cases toxicological and pharmacological studies have not been sufficient to establish their safety as recommended for use. In other instances no reliable practical methods of analysis for the chemical or its breakdown products are available to determine the amount of harmful residue which may remain on the food, and there was evidence that such information was essential for the protection of both the public and the food processor and canner. Undoubtedly more effective control over pesticidal residues on fresh fruits and vegetables will result from the hearings which were held by the Food and Drug Administration, but the authority to set tolerances under existing laws cannot prevent the use of a chemical before a tolerance has been set and the safety of the chemical determined. It is believed that further testimony should be taken to determine whether, and in what respects, existing law with regard to insecticidal spray residues may be insufficient for the protection of the public health.

IV. PUBLIC-HEALTH PROBLEMS ARISING FROM THE USE OF CHEMICALS IN THE PROCESSING, PRESERVATION, AND PRODUCTION OF FOODS

There is nothing objectionable per se in the introduction of chemicals in the processing, preservation, and production of foods. Indeed, many of the compounds used to salt in areas where there is an iodine deficiency in the diet. However, as in the case of pesticides, chemicals have been used in food processing which have proven harmful or which were utilized before their harmfulness had been established. A few of these will be discussed.

Nitrogen trichloride, commonly referred to as Agene, was used for approximately 20 years in the flour-milling industry. It was used primarily for the purpose of artificially aging certain types of flour. At the time nitrogen trichloride was introduced, there was no evidence that it was a poisonous or deleterious substance. In 1946 an English investigator, Sir Edward Mellanby, discovered that dogs fed bread baked from flour containing nitrogen trichloride developed canine hysteria, commonly referred to as running fits. Experiments by qualified investigators in this country soon confirmed Dr. Mellanby's results on dogs as well as on other animals, but they were not able to establish any definite injury to humans. The baking industry and the manufacturer of Agene agreed that it should not be used in flour, whereupon a hearing was held by the Food and Drug Administration and the Definition and Standard of Identity for Wheat Flour and Related Products was amended to prohibit the use of the material.

In 1946 a chemical known as thiourea was proposed for use on citrus fruits in order to control a certain type of mold. Before it was so used the persons proposing its use consulted with the Food and Drug Administration. Experiments were started which, when concluded, showed that thiourea, in addition to being very poisonous, penetrates the skin of citrus fruits and gets into the juice. As a result of the investigations, thiourea was never used on citrus fruits, but several shipments of frozen peaches containing thiourea were seized and destroyed. Under the present provisions of the Federal Food, Drug, and Cosmetic Act a person wishing to use a chemical in food is not required to consult with the Food and Drug Administration. Under the old provisions of the Federal Food, Drug, and Cosmetic Act a person wishing to use a chemical in food is required to consult with the Food and Drug Administration. Less cautious users of thiourea might have proceeded to use it without consulting the Administration and without determining the toxic properties of the substance, as in the case of the manufacturer of the frozen peaches. Were it not for the fact that all of the contaminated peaches were seized before they reached the consumer, a serious poisoning episode might have occurred.

Para-phenyl urea is a synthetic sweetening agent which was used for over 50 years as a sugar substitute for diabetics and others. Until the Food and Drug Administration undertook a chronic toxicity study of this substance 20 years ago, no investigation of its possible toxic effects when ingested in small amounts over a long period of time had been made. Results of the experiments showed that para-phenyl urea was poisonous. One firm continued to use it in its food products even after being repeatedly warned of its toxicity. At that time action could not be taken against the firm because the toxicity studies had not been completed.
A salt substitute containing lithium chloride was marketed about two years ago for persons on a low-salt diet. Subsequently, it was discovered that after an individual has been on a salt-free diet for some time, so that the sodium chloride content of the body has been reduced, lithium chloride is extremely poisonous. Action was taken immediately and lithium chloride was removed from the market, but several deaths had occurred.

Mineral oil, although it has no food value, was long regarded as harmless. It had been used in a variety of special dietary foods, particularly salad dressing, as a substitute for food oils. Between 1941 and 1945 evidence became available which showed that mineral oil when taken with foods interfered with the absorption of various vitamins, and it was also found that infants to whom it was administered sometimes developed lipid pneumonia. As a result of this evidence mineral oil is no longer permitted as a food ingredient.

During the past 12 years, a number of substances referred to as emulsifiers or surface-active agents have been used in a wide range of foods. The emulsifiers fall into four main categories: (1) Mono- and diglycerides of fat-forming fatty acids, which are formed by reacting glycerine with fat; (2) a class of compounds produced by reacting oil, a sugar alcohol, with a fatty acid; (3) a class of compounds produced by reacting a sorbitan ester of a fatty acid with polymericized ethylene oxide; and (4) polyoxyethylene monostearate, which is prepared by reacting polymerized ethylene oxide directly with a fatty acid or by first reacting ethylene oxide with water to form a glycol and then reacting the polymerized glycol with a fatty acid. By varying the fatty acid and by varying the length of the polymericized ethylene oxide chain a great many compounds may be made in each class.

In 1937 it was found that when small amounts of mono- and diglycerides are mixed with shortening and the shortening incorporated in baked goods, their use resulted in what has been described as "more tender" bread, buns, cake and other sweet goods. Thereafter, shortenings containing varying amounts of mono- and diglycerides were marketed. Subsequently, it was found that, by increasing the ratio of mono- and diglycerides in shortening, a very soft loaf of bread could be produced. In 1947, when the polyoxyethylene monostearate type of bread softener appeared on the market, superglycerinated shortening and polyoxyethylene monostearate became competitive products in the baking industry. Thus the name "bread softener" has come to mean preparations containing either mono- and diglycerides or polyoxyethylene monostearate. In addition to their use in shortening, mono- and diglycerides are used as emulsifiers in prepared cake mixes and in the ice-cream industry, where they compete with the polyoxyethylene monostearate type of emulsifier.

Mono- and diglycerides are said to occur in small quantities in some natural fats and are present in small amounts in the animal intestine during the digestive process, but heretofore they have not been ingested in amounts comparable to the amounts being added to some shortenings. No evidence was presented that mono- and diglycerides are or are not harmful when ingested in large quantities.

The principal food uses of the types of emulsifiers referred to above as classes (2) and (3) are in prepared cake mixes, in baked goods, and in ice cream. They are also utilized to some extent as dispersing agents in flavors, essential oils, and polyvitamin solutions. The fourth main class of emulsifier, polyoxyethylene monostearate, is used primarily in the bread industry as a bread softener. There are three types of emulsifiers were sold for food use they were subjected to limited toxicological tests, but in many cases they were marketed before chronic feeding experiments had been completed. At the hearings on bread, rolls, and buns held by the Food and Drug Administration, a certain number of these classes of emulsifiers was proposed for use in bread and the results of a large number of experiments with these classes were presented. A large part of the hearings was devoted to the presentation and interpretation of this data. When the hearings were concluded, the Administrator of the Federal Security Agency issued a tentative notice of proposed rule making which contained a finding of fact stating that the evidence did not permit a conclusion that bread containing any of these three classes of compounds was safe for continuous use over the human life span. Results of experiments completed after the bread hearings ended which were presented to the select committee tend to buttress the finding made in the bread hearings. There is a controversy among reputable scientists as to whether these compounds are safe for use in foods. Nevertheless, they are presently being used to a considerable extent.

The new and widespread uses of hormones in poultry and livestock should be investigated further to determine their effects on the public health.

V. THE USE OF CHEMICAL EMULSIFIERS TO REPLACE NATURAL FATS IN BAKED GOODS

When the polyoxyethylene monostearate type emulsifiers were first marketed in 1947, the price of shortening was high. Some of the persons promoting its sale told bakers that they could cut down on the amount of shortening they were using in their bread, without changing the properties of the bread, through the use of these emulsifiers. Thirteen bakers at the bread hearings testified that salesmen for a few of the companies selling bread softeners had informed them that they could reduce the amount of shortening in their bread by using polyoxyethylene monostearate. Most of these bakers reduced their shortening about 50 percent when they started to use this surface-active agent.

The Director of the Fats and Oils Branch of the National Production and Marketing Administration of the United States Department of Agriculture testified before the committee that the prerwar average use of fat per pound of flour in the baking industry was about 4 percent for bread and rolls; and that following the war and the introduction of emulsifiers, the evidence indicates that this percentage was reduced to 1½ to 2 percent. Taking the 2-percent figure, this would amount to a reduction in the use of fat by the baking industry of about 160,000,000 pounds annually. However, a spokesman for the baking industry stated that it was his opinion that the average use of shortening in bread by bakers is in excess of 3 percent.

In a report of the Committee on Agriculture and Forestry of the U.S. Senate (51st Cong., 2nd sess.) dealing with the utilization of fats and oils, the effect of bread softeners on the use of fats and oils in food products is discussed. The committee concluded
that there is some justification for the complaint that the baking industry is using less lard and shortening than formerly, and that the bread softeners can be used to decrease the amount of shortening in bread.

It is believed that further testimony and data should be secured to determine the extent of the reduction in the use of shortening and other nutritional ingredients in bakery and other food products and to what degree this has been caused by the use of softeners.

VI. CHEMICAL FERTILIZERS AND THE PUBLIC HEALTH

Commercial fertilizers have been used in the United States for about 100 years. The basic constituents of ordinary chemical fertilizers are phosphate, nitrate, and potash. The United States possesses about half of the world's known reserves of phosphate, large deposits of potash salts, and almost limitless reserves of energy for fixing atmospheric nitrogen. Thus the United States is self-sufficient in the basic materials used in commercial fertilizers and will be for centuries to come.

Some of the Nation's most eminent soil and plant scientists appeared before the committee and testified that the use of chemical fertilizers in accordance with good agricultural practices does not injure the soil, increases the yield of food and forage crops, does not produce crops that are less nutritious or less resistant to disease than crops from soil fed by organic fertilizers, and is not responsible for any of man's illnesses. No reliable evidence was presented that the use of chemical fertilizers has had a harmful or deleterious effect on the health of man or animal. In recent years a group of people commonly referred to as 'organic gardeners' or 'organic farmers' has claimed, among other things, that food produced on soil treated with chemicals is inferior in quality and that its consumption leads directly to many present-day illnesses. The "organic school" proposes that the use of chemical fertilizers be stopped and that only ground rocks and compost made from certain organic waste materials be used for fertilizing crops. The supply of organic matter which could be utilized for fertilization purposes, however, apparently would furnish only a small fraction of the need for fertilizers now being met by the use of commercial fertilizers. One of the leaders of the organic school testified that, in his opinion, crops grown with chemical fertilizers are less resistant to insect and disease deprivation, and that crops grown with chemical fertilizers may be responsible for many present-day diseases of mankind.

VII. INADEQUACY OF PRESENT LEGISLATION

With few exceptions, the witnesses who appeared before the select committee testified that they did not think that existing legislation with respect to the use of chemicals and synthetics in the production and processing of food products is adequate to protect the health of the consuming public. It was the consensus that a section generally similar to the New Drug Section of the Federal Food, Drug, and Cosmetic Act be added to the statute which would require proof of safety before a new chemical or synthetic is permitted to be used in or on food products. Several witnesses suggested that an advisory board similar to the national advisory councils of the Public Health Service be appointed to assist the Food and Drug Administration in determining the safety of a chemical proposed for use in or on food. With this recommendation in mind, the following section was included in the bills:

The Commissioner of Food and Drugs, in recommending new legislation, took the following position:

I firmly believe gentlemen, that the public interest and the interest of honest manufacturers require that an amendment to the New Drug Section, be passed by the Congress. The use of any new chemical or no chemical that is subjected to any question as to its safety should be employed until its possible injurious effect, both on an acute and chronic chemical that is proposed for use ought to be proved in advance of distribution in a manner that is required for already tested chemicals.

The New Drug Section was enacted as a result of the Elixir of Sulfanilamide tragedy which occurred in 1938. One manufacturer glycol to the drug as a solvent. Diethylene glycol is the main ingredient in a permanent-type antifreeze for automobiles and is a deadly poison. Without testing the possible toxicity of the mixture, 240 gallons of the product were put on the market. Its use resulted in more than 100 deaths.

This section prohibits the distribution of a new drug in interstate commerce unless the Federal Security Administrator is satisfied, on the basis of evidence submitted by the party sponsoring the use of the new drug, that it is safe for use. This provision of the act has worked very well. Approximately 7,500 new drug applications have been filed since 1938, and 2,500 applications have been withdrawn. The majority of the remaining applications were voluntarily withdrawn by the manufacturer of safety was insufficient. Only a few applications were formally rejected and only one rejection resulted in court action. The drug industry has welcomed this provision of the law.

At present, there are no provisions in the food chapter of the Federal Food, Drug, and Cosmetic Act comparable to the New Drug Section. Section 402 (a) (1) of the act declares a food to be adulterated if it bears or contains any poisonous or deleterious substance which may render it injurious to health. This provision throws on the Government the burden of proving that a chemical added to food is harmful. Evidence so far presented indicates that with existing legislation this burden cannot always be met before injury occurs to consumers.

Section 402 (a) (2) of the act states that a food shall be adulterated if it bears or contains any added poisonous or deleterious substance which is unsafe within the meaning of section 406. Section 406 declares:

Any poisonous or deleterious substance added to any food, except where such substance is required in the production thereof or cannot be avoided by good manufacturing practices, is to be deemed to be unsafe for purposes of this section if the application therefor is not previously approved by the Administrator, and if the Administrator shall promulgate regulations concerning the use of such unsafe substance in food.
The primary purpose of this section was to provide a means by which tolerances could be placed on needed pesticides so as to protect the public health. As indicated earlier in this report, the Food and Drug Administration has recently completed hearings to set tolerances on a large number of pesticides, and regulations are now being formulated. But the setting of tolerances does not give the Food and Drug Administration any advance control over the use of pesticides. Until a tolerance is established, a pesticide may be used without proof of its safety being determined.

The Federal Insecticide, Fungicide, and Rodenticide Act prohibits the adulteration and misbranding of pesticides sold in interstate commerce and requires that a manufacturer of an interstate poison register it with the Secretary of Agriculture before selling it in interstate commerce. When registering a pesticide the manufacturer is required to submit a complete copy of the labeling accompanying the economic poison and a statement of all claims to be made for it, including the directions for use. If requested by the Secretary, the registrant must supply a full description of the tests made and the results on which such claims are based. The Secretary may also require the formula to be submitted. However, the act requires that the Secretary register an economic poison even though he does not believe that it complies with the act, if the manufacturer insists that he do so.

In commenting on this act, the general counsel for the Grocery Manufacturers of America, an outstanding attorney in the field of food and drug law, stated:

Now it is clear that this act is not an appropriate and adequate legislative remedy against the unsafe addition of a pesticidal residue on or in natural food, which may be dangerous to the public health. For, in the first place, it is an economic law to aid the farmer rather than a health law to protect the consumer; and it is designed to regulate the agricultural use of poisonous pesticides in growing natural food, which actually cause a toxic residue on or in it. In the second place, this act does not expressly provide a due control of such a toxic residue; and it is so loosely drawn that a manufacturer of a poisonous pesticide may operate under it without scientifically making the advance residue determinations which are necessary to protect both the consuming public and an affected food manufacturer. That must be so, because the public health danger of a toxic pesticidal residue exists and has increased despite this act. And, in the third place, the unsafe addition of a pesticidal residue on or in natural food should be duly regulated by the FDC Act instead, because it is a national food law to assure a safe use of food. That act now partly regulates a toxic pesticidal residue, as we have seen, and it should complete that regulation, to the extent this is required for the protection of public health.

Under section 401 of the act the Federal Security Administrator has authority to standardize foods. This authority gives the Administrator the power to determine in advance of its use whether a chemical proposed for use in a standardized food is safe. However, there are many food products on the market which are not standardized and will not be standardized for years. In such unstandardized foods, the Administrator has no advance control over the use of chemicals.

The Federal Meat Inspection Service of the Bureau of Animal Industry of the United States Department of Agriculture, operating under authority of the Federal Meat Inspection Act of 1906, exercises a large measure of control over the use of chemicals proposed for use in meat and meat food products. If a meat packer wishes to use a chemical in meat food products which has not been previously accepted for such use, he must request permission of the

Meat Inspection Service. He is required to show, among other things, that the proposed chemical is harmless, and that the burden of proving the safety of the chemical is on him. If, after reviewing the data submitted by the petitioner and all other available data, the Meat Inspection Service is convinced that the chemical is safe, permission is granted; otherwise, it is not. It is anomalous that certain as such are registered, are widely used in many other foods, such as prepared over the use of chemicals in meat and meat food products that was

VIII. CONCLUSIONS

The increasing use of chemical additives in the production and processing of food has raised a serious problem as far as the public health is concerned. The evidence so far presented indicates that existing federal laws dealing with the use of chemicals in food are inadequate to protect the public against the addition of unsafe technological improvements in food production and processing not testified strongly that a chemical or synthetic should not be permitted to be used in the production, processing, or packaging and that the food chapter of the Federal Food, Drug, and Cosmetic Act should be amended to include a section generally similar to the act. In view of the far-reaching consequences for individuals and groups who would be affected by such legislation, comment on proposed legislation before any specific recommendations are made to the Congress.

Respectfully submitted.

JAMES J. DELANEY, New York, Chairman.
THOMAS G. ABERNETHY, Mississippi.
E. H. HENDRICK, West Virginia.
PAUL C. JONES, Missouri.
FRANK B. KEFFE, Wisconsin.
A. L. MILLER, Nebraska.
GORDON L. MC DONOUGH, California.